パーソナルツール
現在位置: ホーム 成田哲博

成田哲博

現在の主な研究内容

1: アクチンフィラメント動態からの分子構造レベルからの解明。

アクチンは、分子量42kDa程度の球状蛋白質です。アクチンは重合して二本のストランドからなる線維を作り、真核生物の生存に必要不可欠な多彩な役割を担っています。ヒトにおいて量の多い骨格筋α、細胞質βアクチンは、トリとヒトで一残基も変化していないことからも、その重要性がわかるでしょう。つまり、数億年にわたって、アクチンに少しでも変異があれば子孫を残せなかったのです。実際、真核細胞内においては、なんらかの力を発生するプロセスの多く(おそらく半分以上)は、アクチンなしには進みません。アクチン線維は細胞内で形成と分解を繰り返しており非常に動的であり、この動態が多くのアクチン線維の機能に必要不可欠です。私はアクチン線維の動態について、様々な研究者と共同研究しながら、構造レベルからの解明に取り組んでいます。

 actin

図1: A: アクチン線維と単量体構造。B: アクチン線維を分解するコフィリンがアクチン線維に結合した状態のクライオ電子顕微鏡構造(Tanaka et al., 2018)。C: 線維構造を保った単量体構造の高分解能X線結晶構造におけるヌクレオチド周辺構造(Kanematsu et al., 2022)。D:ゆらぎの大きなループのゆらぎを減らすために導入した変異位置(Matsuzaki et al., 2020)。E:アクチン線維を引っ張った状態での電子顕微鏡観察(Okura et al., 2023)。

2: バクテリア、古細菌の細胞骨格ホモログの構造解析

アクチンと微小管は真核生物における最も重要な細胞骨格コンポーネントですが、そのホモログはバクテリアや古細菌にも存在します。Robert Robinson グループと共同で、バクテリア、古細菌の細胞骨格構造解析を行っています。2019年にはアクチンホモログの一つボツリヌス菌のParMが15本のストランドから成る複雑な構造をとることを解明。たった一種類の蛋白質の集合によって、このような構造を作るのは驚きです(図2)。アスガルド古細菌の微小管の構造解析にも成功しました(図3)。アスガルド古細菌は、真核生物の直接の祖先と呼ばれています。古細菌の微小管は分子単体の構造は真核生物のものに非常によく似ているのに、線維としての構造がまったく異なります。古細菌から真核生物への進化にあたって、この古細菌の微小管がどう進化して真核生物の微小管に変化してきたか、明らかにしていきたいと思っています。

ParM15strands

図2:ボツリヌス菌ParM構造(Koh et al., 2019)。

AsgardMT

図3:古細菌微小管のクライオ電子顕微鏡写真(左上)と、三次元構造(左下)、同じスケールの真核生物微小管(右下)。右上は、古細菌チューブリン(微小管構成蛋白質、青)の結晶構造と真核微小管分子構造(茶、水色)を重ね合わせたもので、互いに非常に良く似ています(Akil et al., 2022)。

 

3: 電子顕微鏡と細胞骨格を中心とした多くの研究グループとの共同研究

1,2以外にも、細胞骨格、電子顕微鏡解析を中心に多くの共同研究を行っています。2018年以降で、国内外の28組織、36グループと共同研究を行っていて、細胞骨格や線維構造を中心に多様なサンプル、研究手法に関わっています。

 

 

 

 

 

メンバー

  • 松本 友治(研究員)
  • 武田 修一 (研究員)
  • 岩佐 充貞 (招聘教員)
  • 小田 俊郎 (招聘教員、東海学院大学 教授)


大学院生

  • 片山 稜也 (D1)

 

学部生


 

秘書

  •  高見 潤子

 


OB・OG(一部)

  • Tina Lanjing Wang (R5年9月 G30プログラム卒業)

  • 奥田 惇平 (R4年度 学部卒業)

  • 山﨑 岳  (R3年度 修士課程修了)

  • 松崎 瑞季 (R2年9月 博士号取得)

  • 田中 康太郎(H31年2月 博士号取得)

  • 秋月 将吾 (H28年度 修士課程修了)

  • 岩崎 匠平 (H28年度 修士課程修了)

  • 加島 紗瑛 (H27年度 修士課程修了)

  • 神谷 優子 (H26年度 学部卒業)

  • 田中 俊嗣 (H25年度 修士課程修了)

  • 加藤 文香 (H25年度 修士課程修了)

  • 伊藤 圭吾 (H25年度 学部卒業)

 

最近の主な業績

Oda Y, Sadakane K, Yoshikawa Y, Imanaka T, Takiguchi K, Hayashi M, Kenmotsu T, Yoshikawa K. Highly Concentrated Ethanol Solutions: Good Solvents for DNA as Revealed by Single-Molecule Observation. ChemPhysChem (2016) 17: 471-473.

Hayashi M, Nishiyama M, Kazayama Y, Toyota T, Harada Y, Takiguchi K. Reversible Morphological Control of Tubulin-Encapsulating Giant Liposomes by Hydrostatic Pressure. Langmuir (2016) 32: 3794-3802.

Yamada S, Isogai T, Tero R, Tanaka-Takiguchi Y, Ujihara T, Kinoshita M, Takiguchi K. Septin Interferes with the Temperature-Dependent Domain Formation and Disappearance of Lipid Bilayer Membranes. Langmuir (2016) 32: 12823-12832.

Yoshiki Shigemitsu, Naoko Iwaya, Natsuko Goda, Mizuki Matsuzaki, Takeshi Tenno, Akihiro Narita, Minako Hoshi, Hidekazu Hiroaki (2016) Nuclear magnetic resonance evidence for the dimer formation of beta amyloid peptide 1-42 in 1,1,1,3,3,3-hexafluoro-2-propanol, Anal. Biochem., 498, 59

#Shimin Jiang, #Akihiro Narita, #David Popp, #Umesh Ghoshdastider, Lin Jie Lee, Ramanujam Srinivasan, Mohan K. Balasubramanian, Toshiro Oda, Fujiet Koh, Mårten Larsson, Robert C. Robinson (2016), A novel plasmid-segregating actin from Bacillus thuringiensis forms dynamic antiparallel filaments and tubules, PNAS 113: E1200-1205  (#: Equally contributing authors)

A. Narita, E. Usukura, A. Yagi, K. Tateyama, S. Akizuki, M. Kikumoto et al. (2016). Direct observation of the actin filament by tip-scan atomic force microscopy. Microscopy (Oxf) 65, 370.

E. Usukura, A. Narita, A. Yagi, S. Ito, J. Usukura. (2016). An Unroofing Method to Observe the Cytoskeleton Directly at Molecular Resolution Using Atomic Force Microscopy. Scientific reports 6, 27472.  All authors contributed equally to this work

Masaki Makihara, Takashi Watanabe, Eiji Usukura, Kozo Kaibuchi, Akihiro Narita, Nobuo Tanaka and Jiro Usukura (2016), A new approach for the direct visualization of the membrane cytoskeleton in cryo-electron microscopy: a comparative study with freeze-etching electron microscopy. Microscopy 2016;65:488-98

Jiang S, Ghoshdastider U, Narita A, Popp D, Robinson RC. Structural complexity of filaments formed from the actin and tubulin folds. Communicative & integrative biology. 2016;9:e1242538.

Usukura E, Narita A, Yagi A, Sakai N, Uekusa Y, Imaoka Y, et al. A Cryosectioning Technique for the Observation of Intracellular Structures and Immunocytochemistry of Tissues in Atomic Force Microscopy (AFM). Scientific reports. 2017;7:6462.

Fujiwara I, Narita A. Keeping the focus on biophysics and actin filaments in Nagoya: A report of the 2016 "now in actin" symposium. Cytoskeleton (Hoboken). 2017.

Kobayashi S, Terai T, Yoshikawa Y, Ohkawa R, Ebihara M, Hayashi M, Takiguchi K, Nemoto N. In vitro selection of random peptides against artificial lipid bilayers: a potential tool to immobilize molecules on membranes. Chem. Commun. (2017) 53: 3458-3461.

Nishigami M, Mori T, Tomita M, Takiguchi K, Tsumoto K. Membrane fusion between baculovirus budded virus-enveloped particles and giant liposomes generated using a droplet-transfer method for the incorporation of recombinant membrane proteins. Colloids Surf. B Biointerfaces. (2017) 155: 248-256.

Kikumoto M, Oosawa I. Thermodynamic measurements of actin polymerization with various cation species. Cytoskeleton (2017) 74(12) 465-471

Moé Yamada, Yohko Tanaka-Takiguchi, Masahito Hayashi, Momoko Nishina, Gohta Goshima. "Multiple kinesin-14 family members drive microtubule minus end–directed transport in plant cells." J. Cell Biol., 216 (6), 1705-1714, 2017

アクチン線維の構造解析の歴史とこれから 成田哲博 実験医学 2018 Vol36 No8

Popp, D., Koh, F., Scipion, C. P. M., Ghoshdastider, U., Narita, A., Holmes, K. C. & Robinson, R. C. (2018). Advances in Structural Biology and the Application to Biological Filament Systems. Bioessays 40, e1700213.

Tanaka, K., Takeda, S., Mitsuoka, K., Oda, T., Kimura-Sakiyama, C., Maeda, Y. & Narita, A. (2018). Structural basis for cofilin binding and actin filament disassembly. Nat Commun 9, 1860.

Mizuno, H., Tanaka, K., Yamashiro, S., Narita, A. & Watanabe, N. (2018). Helical rotation of the diaphanous-related formin mDia1 generates actin filaments resistant to cofilin. Proc Natl Acad Sci U S A 115, E5000-E5007.

Shunsuke Tanaka, Kingo Takiguchi, Masahito Hayashi "Repetitive stretching of giant liposomes utilizing the nematic alignment of confined actin." Communications Physics, 1, Article number 18, 2018.

Kingo Takiguchi, Masahito Hayashi, Yuki Kazayama, Taro Toyota, Yoshie Harada, Masayoshi Nishiyama "Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure." Biological and Pharmaceutical Bulletin, 41 (3), 288-293, 2018. 

Naoki Nakatani, Hiroki Sakuta, Masahito Hayashi, Shunsuke Tanaka, Kingo Takiguchi, Kanta Tsumoto, Kenichi Yoshikawa "Specific Spatial Localization of Actin and DNA in a Water/Water Microdroplet: Self‐Emergence of a Cell‐Like Structure." ChemBioChem, 19 (13), 2018.

Teikichi Ikura1, Naoya Tochio, Ryosuke Kawasaki, Mizuki Matsuzaki, Akihiro Narita, Mahito Kikumoto, Naoko Utsunomiya-Tate, Shin-ichi Tate and Nobutoshi Ito "The trans isomer of Tau peptide is prone to aggregate, and the WW domain of Pin1 drastically decreases its aggregation" FEBS Letters, https://doi.org/10.1002/1873-3468.13218, 2018

Narita A. ADF/cofilin regulation from a structural viewpoint. Journal of muscle research and cell motility. 2020 41 141-51

Fujiwara S, Kono F, Matsuo T, Sugimoto Y, Matsumoto T, Narita A, et al. Dynamic Properties of Human alpha-Synuclein Related to Propensity to Amyloid Fibril Formation. Journal of molecular biology. 2019;431:3229-45.

Koh F, Narita A, Lee LJ, Tanaka K, Tan YZ, Dandey VP, et al. The structure of a 15-stranded actin-like filament from Clostridium botulinum. Nature communications. 2019;10:2856.

Oda T, Takeda S, Narita A, Maeda Y. Structural Polymorphism of Actin. Journal of molecular biology. 2019;431:3217-28.

Takeda S, Fujiwara I, Sugimoto Y, Oda T, Narita A, Maeda Y. Novel inter-domain Ca(2+)-binding site in the gelsolin superfamily protein fragmin. Journal of muscle research and cell motility. 2020;41;153-62

Narita A. ADF/cofilin regulation from a structural viewpoint. Journal of muscle research and cell motility. 2020;41:141-51.

Matsuzaki M, Fujiwara I, Kashima S, Matsumoto T, Oda T, Hayashi M, et al. D-Loop Mutation G42A/G46A Decreases Actin Dynamics. Biomolecules. 2020;10.(5) 736

Hiroshi Yoke, Hironori Ueno, Akihiro Narita, Takafumi Sakai, Kahoru Horiuchi, Chikako Shingyoji, Hiroshi Hamada, Kyosuke Shinohara, Rsph4a is essential for the triplet radial spoke head assembly of the mouse motile cilia, PLoS genetics, 2020, 16 (3) e1008664

Iwaya N, Goda N, Matsuzaki M, Narita A, Shigemitsu Y, Tenno T, et al. Principal component analysis of data from NMR titration experiment of uniformly (15)N labeled amyloid beta (1-42) peptide with osmolytes and phenolic compounds. Archives of biochemistry and biophysics. 2020:108446.

Morone N, Usukura E, Narita A, *Usukura J. Improved unroofing protocols for cryo-electron microscopy, atomic force microscopy and freeze-etching electron microscopy and the associated mechanisms. Microscopy (Oxf). 2020:69(6) 350-359

Takeda S, Koike R, Fujiwara I, Narita A, Miyata M, Ota M, Maeda Y (2021a) Structural insights into the regulation of actin capping protein by twinfilin C-terminal tail. Journal of molecular biology: 166891

Takeda S, Koike R, Nagae T, Fujiwara I, Narita A, Maeda Y, Ota M (2021b) Crystal structure of human V-1 in the apo form. Acta crystallographica Section F, Structural biology communications 77: 13-21

Tan YQ, Ali S, Xue B, Teo WZ, Ling LH, Go MK, Lv H, Robinson RC, Narita A, Yew WS (2021) Structure of a Minimal alpha-Carboxysome-Derived Shell and Its Utility in Enzyme Stabilization. Biomacromolecules 22(10) 4095-4109

Usukura J, Narita A, Matsumoto T, Usukura E, Sunaoshi T, Watanabe S, Tamba Y, Nagakubo Y, Mizuo T, Azuma J et al (2021) A cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells. Scientific reports 11: 21406

Takede S, Koike R, Nagae T, Fujiwara I, Narita A, Maeda Y, Ota M, Crystal structure of human V-1 in the apo form, Acta Crystallographica Section F: Structural Biology Communications 2021;77 (1) 

Takeda S, Koike R, Fujiwara I, Narita A, Miyata M, Ota M, et al. Structural insights into the regulation of actin capping protein by twinfilin C-terminal tail. Journal of molecular biology. 2021:166891.

Tan YQ, Ali S, Xue B, Teo WZ, Ling LH, Go MK, Hong Lv, Robinson RC, Narita A, Yewet WC Structure of a Minimal alpha-Carboxysome-Derived Shell and Its Utility in Enzyme Stabilization. Biomacromolecules. 2021.

Usukura J, Narita A, Matsumoto T, Usukura E, Sunaoshi T, Watanabe S, Tamba Y, Nagakubo Y, Mizuo T, Azuma J et al (2021) A cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells. Scientific reports 11: 21406

Akil K, Ali S, Tran LT, Gaillard J, Li W, Hayashida K, Hirose M, Kato T, Oshima A, Fujishima K, Blanchoin, L, Narita A, Robinson RC (2022) Structure and dynamics of Odinarchaeota tubulin and the implications for eukarotic microtubule evolution. Science Advances, 8(12) DOI: 10.1126/sciadv.abm2225

Narita A., (2022) Structural analysis of filamentous complexes by cryo-electron microscopy Translat Regulat Sci 4 (3) 68-75

Takahasi, D., Fujiwara, I., Sasajima, Y., Narita, A., Imada, K., Miyata, M. (2022) ATP-dependent polymerisation dynamics of bacterial actin proteins involved in Spiroplasma swimming Open Biology https://doi.org/10.1098/rsob.220083

A Koh, S Ali, D Popp, K Tanaka, Y Kitaoku, N Miyazaki, K Iwasaki, et al.  (2022) An actin-like filament from Clostridium botulinum exhibits a novel mechanism of filament dynamics bioRxiv, 2022.03. 07.483215

E Hamasaki, N Wakita, H Yasuoka, H Nagaoka, M Morita, E Takashima, Narita A et al (2022) The Lipid-Binding Defective Dynamin 2 Mutant in Charcot-Marie-Tooth Disease Impairs Proper Actin Bundling and Actin Organization in Glomerular Podocytes, Frontiers in Cell and Developmental Biology 10, 884509

Y Kanematsu, A Narita, T Oda, R Koike, M Ota, Y Takano, K Moritsugu et al (2022) Structures and mechanisms of actin ATP hydrolysis, Proceedings of the National Academy of Sciences 119 (43), e2122641119

成田哲博, 田中康太郎 (2023) NTS クライオ電子顕微鏡ハンドブック 第四章第二節を執筆

M Iwasa, S Takeda, A Narita, Y Maéda, T Oda, (2023) Mutagenic analysis of actin reveals the mechanism of His161 flipping that triggers ATP hydrolysis, , Frontiers in Cell and Developmental Biology 11, 1105460

S Kreida, #A Narita, MD Johnson, EI Tocheva, A Das, D Ghosal, GJ Jensen  (2023) Cryo-EM structure of the Agrobacterium tumefaciens T4SS-associated T-pilus reveals stoichiometric protein-phospholipid assembly, Structure 31 (4), 385-394. e4

成田哲博 (2022) クライオ電子顕微鏡の現在 (顕微鏡vol57 No3 100)

Kaoru Okura, Tomoharu Matsumoto, Akihiro Narita, Hitoshi Tatsumi (2023) Mechanical Stress Decreases the Amplitude of Twisting and Bending Fluctuations of Actin Filaments J. Mol. Biol. 435(22):168295.

 

 

 

 

 

 

 

連絡先

研究室: 理学部G館2F G218

連絡先: narita.akihiro f.mbox.nagoya-u.ac.jp  (akihiroとfの間に@をいれてください)  内線6473

ドキュメントアクション