パーソナルツール
現在位置: ホーム 前田グループ メンバー 成田 哲博

成田 哲博

アクチンフィラメントは、細胞内で無数の重要な役割を果たしますが、その構造解析には、X線結晶解析やNMR法が使えません。

また、その直径は細く、ゆらぎも大きいため、電子顕微鏡法を用いても困難を伴います。そのため、アクチンフィラメントそのものやその制御メカニズムについては分かっていないことばかりです。

私は、電子顕微鏡写真を解析する新しい画像解析法の開発を通して、アクチンフィラメントのような繊維状タンパク質の動態と機能、および、制御タンパク質による制御メカニズムを探っています。

 

連絡先

narita.akihiro f.mbox.nagoya-u.ac.jp  (akihiroとfの間に@をいれてください)  内線6473

 

業績リスト

  1. Narita, A., Yasunaga, T., Ishikawa, T., Mayanagi, K. & Wakabayashi, T. (2001). Ca2+-induced switching of troponin and tropomyosin on actin filaments as revealed by electron cryo-microscopy. J.Mol.Biol. 308, 241-261.
  2. Narita, A., Takeda, S., Yamashita, A. & Maéda, Y. (2006). Structural basis of actin filament capping at the barbed-end:a cryo-electron microscopy study. EMBO J. 25, 5626-33.
  3. Imai, H., Narita, A., Schroer, T. A. & Maeda, Y. (2006). Two-dimensional averaged images of the dynactin complex revealed by single particle analysis. J Mol Biol 359, 833-9.
  4. Narita, A. & Maéda, Y. (2007). Molecular determination by electron microscopy of the actin filament end structure. J Mol Biol 365, 480-501.
  5. Popp, D., Yamamoto, A., Iwasa, M., Narita, A., Maeda, K. & Maeda, Y. (2007). Concerning the dynamic instability of actin homolog ParM. Biochem Biophys Res Commun 353, 109-14.
  6. Narita, A., Mizuno, N., Kikkawa, M. & Maeda, Y. (2007). Molecular determination by electron microscopy of the Dynein-microtubule complex structure. J Mol Biol 372, 1320-36.
  7. Mizuno, N., Narita, A., Kon, T., Sutoh, K. & Kikkawa, M. (2007). Three-dimensional structure of cytoplasmic dynein bound to microtubules. Proc Natl Acad Sci U S A 104, 20832-7.
  8. 成田 哲博 (2007) アクチンフィラメント端の伸長制御機構 月刊Bionics 3月号 314-317 オーム社
  9. Popp, D., Narita, A., Oda, T., Fujisawa, T., Matsuo, H., Nitanai, Y., Iwasa, M., Maeda, K., Onishi, H. & Maeda, Y. (2008). Molecular structure of the ParM polymer and the mechanism leading to its nucleotide-driven dynamic instability. Embo J 27, 570-9.
  10. Iwasa, M., Maeda, K., Narita, A., Maeda, Y. & Oda, T. (2008). Dual roles of Gln137 of actin revealed by recombinant human cardiac muscle alpha-actin mutants. J Biol Chem 283, 21045-53.
  11. Popp, D., Iwasa, M., Narita, A., Erickson, H. P. & Maeda, Y. (2009). FtsZ condensates: An in vitro electron microscopy study. Biopolymers.
  12. Oda, T., Iwasa, M., Aihara, T., Maeda, Y. & Narita, A. (2009). The nature of the globular- to fibrous-actin transition. Nature 457, 441-5.
  13. Popp, D., Iwasa, M., Maeda, K., Narita, A., Oda, T. & Maeda, Y. (2009). Protofilament formation of ParM mutants. J Mol Biol 388, 209-17. 
  14. 成田 哲博 (2009) 繊維状構造のための単粒子解析法  生物物理 49(6), 314-317
  15. Popp, D., Xu, W., Narita, A., Brzoska, A. J., Skurray, R. A., Firth, N., Goshdastider, U., Maeda, Y., Robinson, R. C. & Schumacher, M. (2010). Structure and filament dynamics of the pSK41 actin-like ParM protein: implications for plasmid DNA segregation. J Biol Chem.
  16. Popp, D., Narita, A., Iwasa, M., Maeda, Y. & Robinson, R. C. (2010). Molecular mechanism of bundle formation by the bacterial actin ParM. Biochem Biophys Res Commun 391, 1598-603.
  17. Popp, D., Iwasa, M., Erickson, H. P., Narita, A., Maeda, Y. & Robinson, R. C. (2010). Suprastructures and dynamic properties of mycobacterium tuberculosis FtsZ. J Biol Chem.
  18. Popp, D., Narita, A., Ghoshdastider, U., Maeda, K., Maeda, Y., Oda, T., Fujisawa, T., Onishi, H., Ito, K. & Robinson, R. C. (2010). Polymeric structures and dynamic properties of the bacterial actin AlfA. J Mol Biol 397, 1031-41.
  19. Takeda, S., Minakata, S., Koike, R., Kawahata, I., Narita, A., Kitazawa, M., Ota, M., Yamakuni, T., Maeda, Y. & Nitanai, Y. (2010). Two distinct mechanisms for actin capping protein regulation--steric and allosteric inhibition. PLoS Biol 8, e1000416.
  20. Popp, D., Narita, A., Maeda, K., Fujisawa, T., Ghoshdastider, U., Iwasa, M., Maeda, Y. & Robinson, R. C. (2010). Filament structure, organization, and dynamics in MreB sheets. J Biol Chem 285, 15858-65
  21. Ito, T., Hirayama, T., Taki, M., Iyoshi, S., Dai, S., Takeda, S., Kimura-Sakiyama, C., Oda, T., Yamamoto, Y., Maeda, Y. & Narita, A. (2011). Electron microscopic visualization of the filament binding mode of actin-binding proteins. J Mol Biol 408, 26-39.
  22. Ito, T., Narita, A., Hirayama, T., Taki, M., Iyoshi, S., Yamamoto, Y., Maeda, Y. & Oda, T. (2011). Human spire interacts with the barbed end of the actin filament. J Mol Biol 408, 18-25.
  23. Narita, A., Oda, T. & Maeda, Y. (2011). Structural basis for the slow dynamics of the actin filament pointed end. Embo J 30, 1230-7.
  24. Narita, A. (2011). Merits of the double-stranded form of the actin filament revealed by structures of the filament ends. Communicative & Integrative Biology 4, 692-695
  25. Narita, A. (2011). Minimum requirements for the actin-like treadmilling motor system. BioArchitecture 1, 205-208
  26. Narita, A., Mueller, J., Urban, E., Vinzenz, M., Small, J. V. & Maeda, Y. (2012). Direct Determination of Actin Polarity in the Cell. J. Mol. Biol. 22 359-368
  27. Vinzenz, M., Nemethova, M., Schur, F., Mueller, J., Narita, A., Urban, E., Winkler, C., Schmeiser, C., Koestler, S. A., Rottner, K., Resch, G. P., Maeda, Y. & Small, J. V. (2012). Actin branching in the initiation and maintenance of lamellipodia. J Cell Sci.  J Cell Sci 125, 2775-85.
  28. *Popp, D., *Narita, A., Lee, L. J., Goshdastider, U., Xue, B., Srinivasan, R., Balasubramanian, M. K., Tanaka, T. & Robinson, R. C. (*: equally contributing authors) (2012). A novel actin-like filament structure from Clostridium tetani. J Biol Chem. 287, 21121-9.
  29. *Popp, D., *Narita, A., Lee, L. J., Larsson, M. & Robinson, R. C. (2012). (*: equally contributing authors) Microtubule-like Properties of the Bacterial Actin Homolog ParM-R1. J Biol Chem 287, 37078-88.
  30. Iwasa, M., Aihara, T., Maeda, K., Narita, A., Maeda, Y. & Oda, T. (2012). Role of the actin ala-108-pro-112 loop in actin polymerization and ATPase activities. J Biol Chem 287, 43270-6.
  31. 成田 哲博 (2013). 電子線トモグラフィーによる細胞内アクチンフィラメント構造解析 顕微鏡 48, 78-83
  32. Mueller, J, Pfanzelter, J, Winkler, C, Narita, A, Clainche, CL, Nemethova, M, Carlier, M, Maeda, Y, Welch, MD, Ohkawa, T, Schmeiser, C, Resch, GP, Small, JV (2014).   Electron Tomography and Simulation of Baculovirus Actin Comet Tails Support a Tethered Filament Model of Pathogen Propulsion, PLOS Biol., doi/10.1371/journal.pbio.1001765
  33. Hiroshi Imai, Akihiro Narita, Yuichiro Maéda, Trina A. Schroer (2014), Dynactin 3D Structure: Implications for Assembly and Dynein Binding, J. Mol. Biol. 426(19), 3262-3271
  34. Y. Shigemitsu, N. Iwaya, N. Goda, M. Matsuzaki, T. Tenno, A. Narita et al. (2016). Nuclear magnetic resonance evidence for the dimer formation of beta amyloid peptide 1-42 in 1,1,1,3,3,3-hexafluoro-2-propanol. Anal Biochem 498, 59.
  35. #Shimin Jiang, #Akihiro Narita, #David Popp, #Umesh Ghoshdastider, Lin Jie Lee, Ramanujam Srinivasan, Mohan K. Balasubramanian, Toshiro Oda, Fujiet Koh, Mårten Larsson, Robert C. Robinson (2016), A novel plasmid-segregating actin from Bacillus thuringiensis forms dynamic antiparallel filaments and tubules, PNAS 113: E1200-1205  (#: Equally contributing authors)All authors contributed equally to this work

  36. A. Narita, E. Usukura, A. Yagi, K. Tateyama, S. Akizuki, M. Kikumoto et al. (2016). Direct observation of the actin filament by tip-scan atomic force microscopy. Microscopy (Oxf) 65, 370.
  37. E. Usukura, A. Narita, A. Yagi, S. Ito, J. Usukura. (2016). An Unroofing Method to Observe the Cytoskeleton Directly at Molecular Resolution Using Atomic Force Microscopy. Scientific reports 6, 27472. All authors contributed equally to this work
  38. Masaki Makihara, Takashi Watanabe, Eiji Usukura, Kozo Kaibuchi, Akihiro Narita, Nobuo Tanaka and Jiro Usukura (2016), A new approach for the direct visualization of the membrane cytoskeleton in cryo-electron microscopy: a comparative study with freeze-etching electron microscopy. Microscopy 65, 488-498
  39. Jiang S, Ghoshdastider U, Narita A, Popp D, Robinson RC. Structural complexity of filaments formed from the actin and tubulin folds. Communicative & integrative biology. 2016;9:e1242538.
  40. Usukura E, Narita A, Yagi A, Sakai N, Uekusa Y, Imaoka Y, et al. A Cryosectioning Technique for the Observation of Intracellular Structures and Immunocytochemistry of Tissues in Atomic Force Microscopy (AFM). Scientific reports. 2017;7:6462

  41. Fujiwara I, Narita A. Keeping the focus on biophysics and actin filaments in Nagoya: A report of the 2016 "now in actin" symposium. Cytoskeleton (Hoboken). 2017.

  42. Popp, D., Koh, F., Scipion, C. P. M., Ghoshdastider, U., Narita, A., Holmes, K. C. & Robinson, R. C. (2018)  Advances in Structural Biology and the Application to Biological Filament Systems. Bioessays 40, e1700213
  43. アクチン線維の構造解析の歴史とこれから 成田哲博 実験医学 2018 Vol36 No8
  44. 顕微鏡ハンドブック (負染色法の項を担当) 朝倉書店 2018
  45. Tanaka, K., Takeda, S., Mitsuoka, K., Oda, T., Kimura-Sakiyama, C., Maeda, Y. & Narita, A. (2018). Structural basis for cofilin binding and actin filament disassembly. Nat Commun 9, 1860.
  46. Mizuno, H., Tanaka, K., Yamashiro, S., Narita, A. & Watanabe, N. (2018). Helical rotation of the diaphanous-related formin mDia1 generates actin filaments resistant to cofilin. Proc Natl Acad Sci U S A 115, E5000-E5007.
  47. Teikichi Ikura1, Naoya Tochio, Ryosuke Kawasaki, Mizuki Matsuzaki, Akihiro Narita, Mahito Kikumoto, Naoko Utsunomiya-Tate, Shin-ichi Tate and Nobutoshi Ito "The trans isomer of Tau peptide is prone to aggregate, and the WW domain of Pin1 drastically decreases its aggregation" FEBS Letters, https://doi.org/10.1002/1873-3468.13218, 2018
  48. 成田哲博 田中康太郎 (2019) コフィリンによるアクチン線維切断とその制御 生化学 91 (1) 109-113
  49. Fujiwara S, Kono F, Matsuo T, Sugimoto Y, Matsumoto T, Narita A, et al. Dynamic Properties of Human alpha-Synuclein Related to Propensity to Amyloid Fibril Formation. Journal of molecular biology. 2019;431:3229-45.
  50. Koh F, Narita A, Lee LJ, Tanaka K, Tan YZ, Dandey VP, et al. The structure of a 15-stranded actin-like filament from Clostridium botulinum. Nature communications. 2019;10:2856.
  51. Oda T, Takeda S, Narita A, Maeda Y. Structural Polymorphism of Actin. Journal of molecular biology. 2019;431:3217-28.
  52. Takeda S, Fujiwara I, Sugimoto Y, Oda T, Narita A, Maeda Y. Novel inter-domain Ca(2+)-binding site in the gelsolin superfamily protein fragmin. Journal of muscle research and cell motility. 2020 41 153-62
  53. Narita A. ADF/cofilin regulation from a structural viewpoint. Journal of muscle research and cell motility. 2020;41:141-51.
  54. Matsuzaki M, Fujiwara I, Kashima S, Matsumoto T, Oda T, Hayashi M, et al. D-Loop Mutation G42A/G46A Decreases Actin Dynamics. Biomolecules. 2020;10.(5) 736
  55. Iwaya N, Goda N, Matsuzaki M, Narita A, Shigemitsu Y, Tenno T, et al. Principal component analysis of data from NMR titration experiment of uniformly (15)N labeled amyloid beta (1-42) peptide with osmolytes and phenolic compounds. Archives of biochemistry and biophysics. 2020:108446. 
  56. Morone N, Usukura E, Narita A, *Usukura J. Improved unroofing protocols for cryo-electron microscopy, atomic force microscopy and freeze-etching electron microscopy and the associated mechanisms. Microscopy (Oxf). 2020.in press
  57. Hiroshi Yoke, Hironori Ueno, Akihiro Narita, Takafumi Sakai, Kahoru Horiuchi, Chikako Shingyoji, Hiroshi Hamada, Kyosuke Shinohara, Rsph4a is essential for the triplet radial spoke head assembly of the mouse motile cilia, PLoS genetics, 2020, 16 (3) e1008664
  58. 成田哲博 (2020) アクチンの機能を構造から理解する 生体の科学 Vol71 No4.304-309
  59. Takede S, Koike R, Nagae T, Fujiwara I, Narita A, Maeda Y, Ota M, Crystal structure of human V-1 in the apo form, Acta Crystallographica Section F: Structural Biology Communications 2021;77 (1) 
  60. Takeda S, Koike R, Fujiwara I, Narita A, Miyata M, Ota M, et al. Structural insights into the regulation of actin capping protein by twinfilin C-terminal tail. Journal of molecular biology. 2021:166891.
  61. Tan YQ, Ali S, Xue B, Teo WZ, Ling LH, Go MK, Hong Lv, Robinson RC, Narita A, Yewet WC Structure of a Minimal alpha-Carboxysome-Derived Shell and Its Utility in Enzyme Stabilization. Biomacromolecules. 2021.
  62. Usukura J, Narita A, Matsumoto T, Usukura E, Sunaoshi T, Watanabe S, Tamba Y, Nagakubo Y, Mizuo T, Azuma J et al (2021) A cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells. Scientific reports 11: 21406
  63. Akil K, Ali S, Tran LT, Gaillard J, Li W, Hayashida K, Hirose M, Kato T, Oshima A, Fujishima K, Blanchoin, L, Narita A, Robinson RC (2022) Structure and dynamics of Odinarchaeota tubulin and the implications for eukarotic microtubule evolution. Science Advances, 8(12) DOI: 10.1126/sciadv.abm2225
  64. Narita A., (2022) Structural analysis of filamentous complexes by cryo-electron microscopy Translat Regulat Sci 4 (3) 68-75
  65. Takahasi, D., Fujiwara, I., Sasajima, Y., Narita, A., Imada, K., Miyata, M. (2022) ATP-dependent polymerisation dynamics of bacterial actin proteins involved in Spiroplasma swimming Open Biology https://doi.org/10.1098/rsob.220083
  66. A Koh, S Ali, D Popp, K Tanaka, Y Kitaoku, N Miyazaki, K Iwasaki, et al.  (2022) An actin-like filament from Clostridium botulinum exhibits a novel mechanism of filament dynamics bioRxiv, 2022.03. 07.483215
  67. E Hamasaki, N Wakita, H Yasuoka, H Nagaoka, M Morita, E Takashima, Narita A et al (2022) The Lipid-Binding Defective Dynamin 2 Mutant in Charcot-Marie-Tooth Disease Impairs Proper Actin Bundling and Actin Organization in Glomerular Podocytes, Frontiers in Cell and Developmental Biology 10, 884509
  68. Y Kanematsu, A Narita, T Oda, R Koike, M Ota, Y Takano, K Moritsugu et al (2022) Structures and mechanisms of actin ATP hydrolysis, Proceedings of the National Academy of Sciences 119 (43), e2122641119
  69. 成田哲博, 田中康太郎 (2023) NTS クライオ電子顕微鏡ハンドブック 第四章第二節を執筆
  70. M Iwasa, S Takeda, A Narita, Y Maéda, T Oda, (2023) Mutagenic analysis of actin reveals the mechanism of His161 flipping that triggers ATP hydrolysis, , Frontiers in Cell and Developmental Biology 11, 1105460
  71. S Kreida, #A Narita, MD Johnson, EI Tocheva, A Das, D Ghosal, GJ Jensen  (2023) Cryo-EM structure of the Agrobacterium tumefaciens T4SS-associated T-pilus reveals stoichiometric protein-phospholipid assembly, Structure 31 (4), 385-394. e4
  72. 成田哲博 (2022) クライオ電子顕微鏡の現在 (顕微鏡vol57 No3 100)
  73. Kaoru Okura, Tomoharu Matsumoto, Akihiro Narita, Hitoshi Tatsumi (2023) Mechanical Stress Decreases the Amplitude of Twisting and Bending Fluctuations of Actin Filaments J. Mol. Biol. accepted

google scholarにおける文献リスト

 

プレス発表

“細胞が形状を変えながら移動する謎の一端を解明 - アクチンフィラメント端での伸縮制御メカニズムが明らかに –“

2006年 11/17 科学技術振興機構, 理化学研究所, 名古屋大学

日本経済新聞、日経産業新聞、日刊工業新聞、中日新聞、科学新聞の5紙に掲載

 "世界初!細胞内の線維を切るハサミの機構を解明" 2018年 5/15 名古屋大学、大阪大学、東海学院大学、豊田理化学研究所

日刊工業新聞に掲載

 

受賞歴

風戸研究奨励賞(2007)

文部科学大臣表彰若手科学賞(2008)

日本顕微鏡学会論文賞 顕微鏡法基礎部門(FUNDAMENTALS) (2018) M. Makihara, T. Watanabe, E. Usukura, K. Kaibuchi, A. Narita, N. Tanaka et al. (2016). A new approach for the direct visualization of the membrane cytoskeleton in cryo-electron microscopy: a comparative study with freeze-etching electron microscopy. Microscopy (Oxf) 65, 488. に対する受賞

日本顕微鏡学会論文賞 顕微鏡法基礎部門(FUNDAMENTALS) (2019) *A. Narita, E. Usukura, A. Yagi, K. Tateyama, S. Akizuki, M. Kikumoto et al. (2016). Direct observation of the actin filament by tip-scan atomic force microscopy. Microscopy (Oxf) 65, 370. に対する受賞

 

学会活動

1998-1999 生物物理若手の会会長

2009-2010  日本顕微鏡学会第66回学術講演会実行委員

2011-2012  日本生物物理学会第50回年会実行委員

2012-2013  日本顕微鏡学会第57回シンポジウム実行委員

2014-2015 日本顕微鏡学会第71回学術講演会プログラム委員

2015-2017  日本顕微鏡学会理事

2017-2018  生物物理学会分野別専門委員

2018-2019  日本顕微鏡学会2019年学術講演会生物系プログラム副委員長

2017-2019  生理学研究所超高圧電子顕微鏡共同利用実験委員

2016-2020 大阪大学蛋白質研究所クライオ電子顕微鏡共同利用・共同研究専門部会委員

2020-2021  OIST Shintake Unit 外部評価委員

2020-2022  生体運動研究合同班会議責任者

2022-現在  第61回日本生物物理学会年会実行委員

2019-現在  ERATO胡桃坂プロジェクト評価委員

2019-現在 和文誌顕微鏡編集委員 (日本顕微鏡学会発行)

2022-現在  生物物理学会分野別専門委員

 

 

ドキュメントアクション